SERC Delivers Fuel Cell Test Station to Purdue University

In early December, Marc Marshall and I travelled to Purdue University in West Lafayette, Indiana to install and train staff in the use of SERC’s first combined heat and power (CHP) fuel cell test station. CHP is also known as cogeneration. As reported in our Summer 2015 newsletter, the station was custom built for Professor Neera Jain in Purdue’s School of Mechanical Engineering.

Purdue-group

Left to right: Greg Chapman, Professor Neera Jain, graduate students Austin Nash and Rian Browne, and Marc Marshall pose with the newly installed test station.

The test station was designed so that Neera and her engineering students can study the electrical and thermal characteristics of this fuel cell cogeneration system in a simulated residential application. A Ballard fuel cell stack produces the electrical power while waste heat from the stack is transferred to a domestic hot water tank via the fuel cell cooling water system. Custom software allows the researchers to simulate the electrical and domestic hot water use typical of a single-family home. By measuring performance in various conditions, Neera and her students will be able to develop control algorithms to optimize system efficiency.

Purdue-Greg

Greg Chapman, project manager for the CHP fuel cell test station, poses with the newly installed test station.

Household fuel cell cogeneration systems have been field tested over the last few years and are making their way into the market, mainly in Japan and Germany. Panasonic launched its fourth generation fuel cell CHP model in 2015 and has installed over 10,000 units in Japan. Callux continues field-testing in Germany, and is targeting over 500 installed units by mid-2016. Both the Panasonic and Callux cogeneration systems convert natural gas to hydrogen in a reformer before supplying the fuel cell. It will be interesting to follow the progress of these high efficiency and reliable home energy systems as they enter the market.

Purdue Project Continues SERC’s Commitment to Technology Transfer

Continuing our long commitment to helping other universities get started in fuel cell research, SERC has recently begun working to build a fuel cell test station for Professor Neera Jain of Purdue University. As a new professor in Purdue’s School of Mechanical Engineering, Neera is establishing a research program to study the operation of a fuel cell co-generation system designed for a home. The fuel cell will provide almost all the electricity needed for the home, while the waste heat generated will be used to heat water and space, resulting in very high overall efficiency.

The test station will be fitted with a Ballard 2.4 kW, water-cooled fuel cell, a programmable electronic load, and three increasingly larger hot water tanks, each fitted with an internal heat exchanger. The cooling water from the stack will be piped to the tank’s exchanger to preheat water for domestic use. Custom software that we develop will enable Neera and her grad students to simulate electricity and hot water load profiles. By varying the profiles and operating conditions and measuring performance, Neera will be able to develop control algorithms for optimum efficiency.

This project with Neera and Purdue is the latest example of SERC’s involvement in technology transfer to other universities and schools. We’ve been doing similar work for almost two decades.

Christine Parra of SERC leads Merit Academy students through a calculation involving our first Stack-in-a-Box®. (1999)

Christine Parra of SERC leads Merit Academy students through a calculation involving our first Stack-in-a-Box®. (1999)

Our work started in 1998 when we were contacted by the Merit Academy, a small charter school near Santa Cruz. The school had obtained a DOE grant to study fuel cell technology and wanted hardware so their students could do experiments. This led to us developing our first Stack-in-a-Box® fuel cell educational tool. Merit students visited our lab and helped assemble the fuel cell and the next March, we delivered it to the school with an associated curriculum. We had lots of fun doing fuel cell calculations and making fuel cell powered milk shakes. Later, the students and their fuel cell travelled to Washington DC to explain hydrogen technology and make ice cream for amazed attendees at the National Hydrogen Association annual meeting.

SERCers Greg Chapman (left), Denise McKay (kneeling), and Antonio Reis (right) deliver our first fuel cell test station to Professor Anna Stefanopoulou (standing left of Denise) and two of her grad students in the Lay Automotive Lab at the University of Michigan. (2002)

SERCers Greg Chapman (left), Denise McKay (kneeling), and Antonio Reis (right) deliver our first fuel cell test station to Professor Anna Stefanopoulou (standing left of Denise) and two of her grad students in the Lay Automotive Lab at the University of Michigan. (2002)

We’ve continued to build Stack-in-a-Boxes®. They’ve gone to places far and wide—Smith College, Southwestern Community College in North Carolina, Lawrence Hall of Science at UC Berkeley, SunLine Transit Agency, and we kept one ourselves. It continues to be a wonderful tool for teaching about hydrogen and fuel cell technology and to excite students about science.

That’s how we started; we then branched out into fuel cell test stations. Out of necessity as we developed our fuel cell program, we spent many years building and perfecting our test stations. When Professor Anna Stephanopoulou, director of the University of Michigan’s Lay Automotive Lab, called and inquired about a test station, we agreed to build her a custom station. In the summer of 2002, we travelled to Michigan, installed the station, and trained Anna and her grad students in its use.

H2E3_Test_Bench

Richard Engel (left) and SERC Director Peter Lehman deliver a test station to UC Berkeley as part of the Hydrogen Energy in Engineering Education project. Also pictured are Professor Dan Kammen (right) and Tim Lipman of UC Berkeley. (2009)

Fast forward thirteen years. In addition to Michigan, our test stations are now in use at universities as diverse as Auburn, Kettering, and UC Berkeley. A few years ago, we reached an international audience when we built and installed a test station at Masdar Institute of Science and Technology in the United Arab Emirates.

Greg Chapman (left) trains Professor Tariq Shamim (center) and a grad student in the use of our test station at Masdar Institute of Science and Technology in the United Arab Emirates. (2011)

Greg Chapman (left) trains Professor Tariq Shamim (center) and a grad student in the use of our test station at Masdar Institute of Science and Technology in the United Arab Emirates. (2011)

Each of our stations has been customized and has presented us with new challenges and the opportunity to break new ground. The test station for Neera and Purdue is no exception. It is the first station we’ve built that will enable use of fuel cell waste heat and the first to use a commercial fuel cell, not one we’ve built ourselves. And as always, there are new design problems to overcome and new equipment to spec out and procure.

It’s been enjoyable working with Neera to design the station to exactly meet her research needs. We know we’re assisting a new faculty member in getting her research off the ground so that she can help solve important energy problems. It’s what makes our work so interesting and rewarding.

Alternative Fuel Readiness Planning

Last year, in partnership with the Redwood Coast Energy Authority (RCEA) and other key regional partners, SERC embarked on a two-year Alternative Fuels Readiness Planning (AFRP) project funded by the California Energy Commission (CEC). This project seeks to assess the potential for development of alternative transportation fuels such as electricity, hydrogen, and some biofuels in the North Coast region of California.

The goal of the SERC-led analytical work is to explore pathways for the North Coast region to achieve the 10% reduction in average fuel carbon intensity by 2020 mandated under California’s Low Carbon Fuel Standard (LCFS). To this end, we have recently finished developing a simulation model, drawing on price data for fuels, vehicles, and distribution infrastructure, as well as analysis of regional transportation trends and fuel life cycle greenhouse gas (GHG) emissions. The model allows us to simulate the economic efficiency of GHG reduction via each fuel pathway individually as well as for a suite of technologies deployed to meet the LCFS target. It offers a nuanced understanding of the systems in question, enabling us to evaluate the impact of changing fuel and vehicle prices, electric grid carbon intensities, and other factors on the cost of GHG abatement through alternative fuel deployment.

Outputs of this analysis are being used by RCEA as it engages with both public and private sector transportation energy stakeholders across the region. This collaboration will lead to the development of a strategic plan for deploying a more sustainable transportation system in the North Coast of California.

Marginal Abatement Cost (MAC) for each of the fuel pathways considered. Presented here is aggregate marginal cost above a conventional fuel/vehicle baseline. These costs include fuel cost as well as any incremental vehicle or distribution infrastructure cost required for a given fuel type.

Marginal Abatement Cost (MAC) for each of the fuel pathways considered. Presented here is aggregate marginal cost above a conventional fuel/vehicle baseline. These costs include fuel cost as well as any incremental vehicle or distribution infrastructure cost required for a given fuel type.

 

Helping California Pursue Greenhouse Gas Reductions in the Transportation Sector

The State of California has set ambitious goals for greenhouse gas emission reductions:  a reduction to 1990 levels by the year 2020, and to 80% below 1990 levels by 2050.  According to the California Air Resources Board (CARB), 28% of the State’s total greenhouse gas emissions are attributable to light-duty passenger vehicles. Understandably, the State has placed significant focus on reducing emissions in the transportation sector, with a key strategy being the widespread deployment of zero emission vehicles (ZEVs). This includes both plug-in electric and hydrogen fuel cell electric vehicles (FCVs), two technology areas where SERC has significant expertise.

As part of their policy analyses, CARB staff estimated that ZEV market penetration levels over the next three decades will need to reach dramatic levels in order for us to reach our greenhouse gas emission reduction goals. The figure below depicts a scenario where FCVs and battery electric vehicles (BEVs) make up a whopping 87% of the light duty auto fleet in 2050, with the remainder of the fleet being composed of plug-in hybrid electric vehicles (PHEVs), hybrid electric vehicles (HEVs), and conventional vehicles.

Target Market Penetration Levels for Passenger Vehicles

State sponsored efforts to encourage and even require the widespread deployment of ZEVs include regulations requiring auto manufactures to sell a minimum number of ZEVs in the State; consumer rebates for ZEV purchases; funding to support local planning for ZEVs and associated fueling infrastructure; and funding to support the installation of electric vehicle (EV) charging stations and hydrogen fueling stations.

Many of SERC’s projects over the last two decades have supported these efforts. In the early days (circa 1990), SERC developed a small fleet of FCVs and a hydrogen fueling station for SunLine Transit in Thousand Palms, CA. Later SERC provided technical support for AC Transit’s fuel cell bus program, and delivered hydrogen safety trainings for emergency first responders for FCV projects around the country. SERC designed and installed a hydrogen fueling station at Humboldt State University, which has enabled SERC to operate, test, and demonstrate a Toyota Highlander FCV for the last five years.

Participants check out EVs like this Nissan Leaf at the Upstate EV101 workshop in Redding, CA.

Participants check out EVs like this Nissan Leaf at the Upstate EV101 workshop in Redding, CA.

In the last few years, SERC has been involved in several California Energy Commission funded projects to support the deployment of ZEVs. These efforts have included Plug-In Electric Vehicle Readiness projects for the North Coast region (Humboldt, Trinity, and Del Norte counties) and the Upstate region (Shasta, Siskiyou, and Tehama counties). These two projects featured the development of plans to install EV charging stations throughout these regions. SERC’s work in these locales continues as we identify additional locations for EV charging stations and support the design and installation of many of these stations. In addition, we are working on a project to assess the opportunities and barriers associated with deployment of a wide array of alternative fuel vehicles in the North Coast region. This includes not only EVs and FCVs, but also biofuel and natural gas fueled vehicles.

SERC has also recently partnered with the Transportation Sustainability Research Center at UC Berkeley and others to establish the Northern California Center for Alternative Transportation Fuels and Advanced Vehicle Technologies (NorthCAT).  NorthCAT will focus on education, training, demonstration, and deployment of alternative transportation fuels and advanced vehicle technologies in the Northern California region.

Watch future newsletters for updates on these projects as SERC continues to help the north state region move toward a low-carbon, sustainable transportation future.

Assessing the Costs and Benefits of Alternative Fuel Pathways

AFRP logo-wpThis summer, in partnership with the Redwood Coast Energy Authority (RCEA) and other key regional partners, SERC embarked on a two-year Alternative Fuels Readiness Planning (AFRP) project funded by the California Energy Commission (CEC). This project seeks to assess the potential for development of alternative transportation fuels such as electricity, hydrogen, and some biofuels in the North Coast region of California. Each of the counties in the region (Humboldt, Mendocino, Del Norte, Trinity and Siskiyou) presents different challenges with respect to vehicle fleet, terrain and fuel demand. SERC is leading the analytical work, focusing on the costs and benefits of various alternative fuel pathways, and RCEA will lead the stakeholder engagement and strategic planning process.

The goal for the analytical work is to explore ways for the North Coast region to achieve the 10% reduction in fuel carbon intensity by 2020 mandated under California’s Low Carbon Fuel Standard (LCFS). The optimal mix of alternative fuel vehicles and refueling infrastructure will depend on a variety of factors including commodity prices, policy implementation, carbon markets, electric grid mix, incentive structures, and fuel technology development. The simulation model being developed by SERC will enable local and state agencies and other partners to target incentives and investments in light of these realities.

Our first task was to figure out how much gasoline and diesel is being consumed on a yearly basis in each of the five counties. This involved collecting data from Air Quality Management Districts, CalTrans, the CEC, and other sources that track transportation markets and emissions. Additionally, we have catalogued existing alternative fueling stations (such as electric vehicle chargers and biodiesel fueling stations) in the region, and any measurable amounts of fuel they dispense.

With fuel quantities in hand, we will soon complete our simulation model, conduct the alternative fuels portfolio analysis, and then explore the potential impact of incentives on the adoption of alternative fuels. Ultimately, we will present the products of our work to regional stakeholders in the context of a strategic planning process. Using the stakeholders’ input, the team will set regional goals for alternative fuel adoption and define a roadmap to achieving a more sustainable transportation system.

SERC to Celebrate Our 25th Anniversary

On the afternoon of Friday, May 16, Schatzers from far and wide will gather at Freshwater Park outside Eureka to commemorate the silver anniversary of the Schatz Energy Research Center. Catered food and general merriment will help us celebrate 25 years of clean and renewable energy work.

It all began with a phone call in May of 1989. Mr. Schatz called me up to ask questions about a proposal I had sent him to build a system to demonstrate using hydrogen to store solar energy. He had solicited ideas about hydrogen research from HSU and when I heard about the possibility, I sent him a proposal the next day.

Mr. Schatz didn’t waste words. He started the conversation by saying, “This is Mr. Schatz. You sent me a proposal. I have questions.” Our call lasted over an hour and when it was over, I suggested sending him a revised proposal based on our conversation. He agreed and I did. Less than two weeks later, a small envelope with a check for $75,000 appeared in my mailbox and the great adventure that has become the Schatz Center had begun.

The first thing I did was to knock on Charles Chamberlin’s door. Charles and I had collaborated on several projects before and I knew he was just the partner I needed. Our partnership has been a cornerstone for the lab ever since.

P&CatTdad-touchup

Directors Peter Lehman and Charles Chamberlin pose in front of the Schatz Solar Hydrogen Project in 1995.

That first project, the Schatz Solar Hydrogen Project at HSU’s marine lab in Trinidad, turned out to be just the beginning. When the fuel cell we bought for the project didn’t work, Mr. Schatz told me, “Build your own.” So Charles and I wrote a proposal to build a fuel cell lab and begin work to develop our own fuel cell. Along came another small envelope, this time with a check for $300,000 and a small handwritten note that said, “Get to work!”

Directors

Director Arne Jacobson with Charles and Peter at SERC’s 20th Anniversary party.

That experience led us to many more hydrogen projects and to many places. We introduced America’s first PEM fuel cell car and built the first hydrogen fueling station in the late 1990s, near Palm Springs in southern California. We built fuel cell power systems for remote use in Alaska and for a radio telephone system in Redwood National Park. We’ve installed fuel cell test stations in a number of universities, including most recently in Abu Dhabi. Four corporations have licensed our fuel cell patents, seeking to commercialize the technology.

Fast forward to today and our energy work has broadened considerably. We’re involved in developing standards for LED lighting products and in providing energy access in Africa and Asia. We’ve branched out into bioenergy, with projects to install a biomass-fired fuel cell power system here locally and another to characterize technologies such as biochar and torrefaction, in an effort to reduce the cost of getting energy rich biomass to market.  We’re also involved in helping to plan electric and alternative fuel infrastructure here in northern California and in India. It’s amazing how far we’ve come.

It’s the people at SERC who have made this happen. Over these 25 years, 145 people have contributed their efforts to our enterprise.  We’re lucky that one of them, Arne Jacobson, returned to SERC after getting his PhD to become our director and to lead our international work. Many more have gone on to interesting and important energy careers around the world.

We have much to celebrate as we look back over a quarter of a century. And we can be proud that we’re continuing our work to make this a greener planet.

Aqueous Phase Reformation: New Pathway for Renewable Biomass to Offset Fossil Fuels

I’ve been leading a new area of research aimed at offsetting natural gas consumption with hydrogen produced from biomass-derived sugars or waste glycerol from biodiesel production. The process utilizes waste heat in the exhaust from internal-combustion-engine power plants to drive chemical reactions that produce hydrogen. The hydrogen can then be blended with the primary natural gas fuel in order to enhance combustion. Hydrogen-enriched combustion can increase efficiency by up to 20% and reduce emissions of NOx by more than 95%.

The current project is focused on understanding the use of catalysts in aqueous phase reformation (APR) processes to speed up chemical reactions so that medium-temperature waste heat can be used to reform a wide range of plant based feedstocks.

Mark Severy recently graduated with a M.S. in Environmental Resources Engineering from HSU.  His thesis modeled the waste heat resources available from large internal-combustion-engine power plants like the one at the Humboldt Bay Generating Station. His work demonstrates that, depending on engine type and operating conditions, there is sufficient waste heat to replace a significant portion of the natural gas with hydrogen produced from waste glycerol left over from biodiesel production.  His work also shows that water vaporization in APR can consume a significant portion of the recovered waste heat.  By raising the APR pressure, this water vaporization could be reduced. We are currently applying for grants to experimentally investigate high-pressure APR.

Waste heat from engine exhaust is used to convert the feedstock into hydrogen rich gas. The hydrogen produced in the reformer will be mixed with natural gas and air in the combustion engine to increase efficiency and reduce emissions.

Waste heat from engine exhaust is used to convert the feedstock into hydrogen rich gas. The hydrogen produced in the reformer will be mixed with natural gas and air in the combustion engine to increase efficiency and reduce emissions.

HSU Hydrogen Fueling Station Hosts First Hydrogen Fuel Cell Commute from the Bay Area

Anand-refueling

Anand Gopal poses with the Toyota Fuel Cell Hybrid Vehicle (FCHV-adv) that he drove from the Bay Area.

Anand Gopal, research scientist at Lawrence Berkeley National Labs (LBNL) and former Schatz Energy Fellow, and Elizabeth Pimentel-Gopal, former HSU Assistant Director of Admissions, drove from Berkeley to Arcata to visit friends and family over the second weekend of September. Rather than a mundane weekend trip, theirs was a precedent-setting event; their entire trip was powered by hydrogen fuel.

Their trip represents the first time the HSU Hydrogen Fueling Station has been used to fuel a vehicle commuting to and from the Bay Area aside from the vehicles under test at SERC. Filling the Toyota Fuel Cell Hybrid vehicle (FCHV-adv) with hydrogen at 700-bar (10,000 psi) gave the vehicle a range of over 285 miles and enabled Anand and Elizabeth to complete their return trip to one of the nearest hydrogen stations (located in Richmond and Emeryville). For Anand the event was especially meaningful. During his time at SERC, the HSU student team that he advised won an international hydrogen energy design competition in 2005, which inspired the development of the HSU hydrogen station.

RePowering Humboldt with Community Scale Renewable Energy

repower-banner

In March of this year, along with our partner, the Redwood Coast Energy Authority (RCEA), we completed the three-year RePower Humboldt project funded by the California Energy Commission (CEC). A key deliverable, the RePower Humboldt Strategic Plan, identified future energy scenarios for Humboldt County in which local renewable energy resources could provide over 75 percent of local electricity needs and a significant portion of heating and transportation energy needs by 2030. The plan pinpoints biomass and wind energy as key resources. In addition, large-scale adoption of plug-in electric vehicles and heat pumps was found to be critical to the cost-effective reduction of greenhouse gas emissions. Now, the RePower Humboldt team is looking for opportunities to put the plan into action.

At our final project review meeting in Sacramento, CEC project manager Mike Sokol mentioned how impressed the CEC has been with the quality of our work. Now they have backed up this praise with a proposed award to begin implementing the RePower Humboldt Strategic Plan.  The follow-on grant, a $1.75 million award, again partners SERC with RCEA and also includes the Blue Lake Rancheria as a new project partner. Our proposal was ranked third among 30 submissions and was one of only four awards in our research area.

The new project, called Repowering Humboldt with Community Scale Renewable Energy, is expected to begin in June of 2013 and will run through March of 2015. The purpose of the project is to demonstrate and validate key aspects of the RePower Humboldt Strategic Plan.  The project will include two main elements: SERC will lead the design and installation of a first-of-its-kind woody biomass gasifier and fuel cell power system, and RCEA will implement a community-based energy upgrade program.

The biomass energy system will be installed at the Blue Lake Rancheria casino and hotel where it will supply about a third of the electric power needs. It will feature a Proton Power gasifier that turns sawdust-sized woody biomass into hydrogen fuel, and a 175-kW Ballard fuel cell that generates electricity from hydrogen. Waste heat from the system will be used to meet hot water needs. We aim to achieve a biomass-to-electricity efficiency double that of a comparable-scale, conventional steam power plant. If successful, this project could open up a new market for distributed-scale, biomass combined heat and power systems.

The energy upgrade component will focus on services for residences and businesses in the Mad River valley community (City of Blue Lake, Blue Lake Rancheria, and surrounding areas), including energy efficiency, solar energy systems, heat pumps, and the installation of two electric vehicle charging stations. This energy upgrade will demonstrate a comprehensive, community-based energy services model that can be replicated throughout the state.

The RePowering Humboldt with Community Scale Renewable Energy project is an exciting effort that will help move Humboldt County toward a secure energy future. Watch for updates in future newsletters as the project unfolds.

All project documents for the RePower Humboldt project, including the strategic plan, a regulatory and policy guide on renewable energy and energy efficiency, and other technical reports and memos can be accessed on SERC’s web page here.

Photo credit: Malene Thyssen (wave) and Bin vim Garten (vehicle).

HSU Hydrogen Fueling Station Upgrade

The 700 bar compressor and partially-assembled high pressure dispensing system mounted on the block wall.

SERC is nearing the completion of the installation phase of our hydrogen station upgrade project. As a reminder, when it’s complete, the upgrade will allow us to completely fill our Toyota fuel cell car with 6 kg of hydrogen.  That will give us a 400-mile range, enough to travel to the Bay Area or Sacramento and back.

The new 700 bar compressor is mounted and electrical power and the nitrogen and hydrogen gas supply lines have been connected. We are now in the process of installing the last few components of the high-pressure hydrogen dispensing system (the compressor discharge side). Once assembly is complete, SERC engineers will begin the testing phase of the commissioning plan. Tests will include field inspections, instrumentation verification tests, gas analysis, and pressure testing of the hydrogen plumbing.  The initial start-up and operational testing of the new system will follow sometime in late July. This is an exciting period in the project; we’ll keep you posted on our progress.