Forest Biomass Energy: Looking for the Big Picture

This spring SERC embarked on a major forest biomass energy research project in partnership with Humboldt State University’s forestry department and researchers, entrepreneurs, and natural resource management agencies from a number of western and midwestern states. The “Waste to Wisdom” project will examine the entire supply chain of biomass, including collection, transportation, and pre-treatment of the material in the woods, as well as conversion of the material into energy and other marketable products using a variety of emerging technologies. Experts in economics, life cycle analysis, and environmental impacts will assess and compare the different biomass pathways.

BRDI-group

Mike Alcorn, chief forester for Green Diamond Resource Company, shows the BRDI research team a site where material is collected for use at Humboldt County’s biomass power plants.

The project officially launched with a kick-off meeting at HSU on May 13 and 14. The project’s thirteen principal investigators as well as several other stakeholders gathered to meet one another and discuss how to coordinate the many components of this complex effort. The meeting included a trip to a nearby timber harvest site on Green Diamond Resource Company land where state-of-the-art technology and logistics are being used to gather, chip, and haul slash for use in Humboldt County’s biomass power plants.

BRDI PIs

SERC director Arne Jacobson, U.S. Forest Service economist Ted Bilek, and HSU forestry professor Han-Sup Han will lead BRDI’s three research teams.

SERC’s role in the project is to oversee the testing and evaluation of three different types of biomass conversion technologies (BCTs): a biochar unit, a torrefier, and a briquetter. Biochar is solid, carbon-rich biomass that has been treated at high temperature, above 500°C, and is used principally as a soil amendment. Torrefaction takes place at a lower temperature, near 300°C, producing a solid fuel that can be directly substituted for coal in existing power plants. Briquettes are made near ambient temperature by compressing finely ground biomass and can be used in place of cordwood in biomass-fired heating and power generation systems. An important goal of Waste to Wisdom is to adapt each of these BCTs for mobile, stand-alone use at remote sites where utility service is not available. Decentralized deployment of these BCTs could be an economically viable alternative to the costly collection and transportation of raw biomass from far-flung timber harvest and wildland fuel reduction sites.

The $7.45 million, three-year project is sponsored by the U.S. Department of Energy through the Biomass Research and Development Initiative (BRDI) program, jointly supported by the U.S. Department of Agriculture. Each of the collaborating partners is making a cost share contribution to the project’s total budget. SERC’s share of the federal funding is $900,000, to which the lab is adding $185,000 worth of labor, equipment, and facility use.

SERC director Arne Jacobson will act as principal investigator for the BCT evaluation component of Waste to Wisdom. “We are excited to be involved in this project. We have a great set of partners, and we look forward to a successful effort.”

SERC to Celebrate Our 25th Anniversary

On the afternoon of Friday, May 16, Schatzers from far and wide will gather at Freshwater Park outside Eureka to commemorate the silver anniversary of the Schatz Energy Research Center. Catered food and general merriment will help us celebrate 25 years of clean and renewable energy work.

It all began with a phone call in May of 1989. Mr. Schatz called me up to ask questions about a proposal I had sent him to build a system to demonstrate using hydrogen to store solar energy. He had solicited ideas about hydrogen research from HSU and when I heard about the possibility, I sent him a proposal the next day.

Mr. Schatz didn’t waste words. He started the conversation by saying, “This is Mr. Schatz. You sent me a proposal. I have questions.” Our call lasted over an hour and when it was over, I suggested sending him a revised proposal based on our conversation. He agreed and I did. Less than two weeks later, a small envelope with a check for $75,000 appeared in my mailbox and the great adventure that has become the Schatz Center had begun.

The first thing I did was to knock on Charles Chamberlin’s door. Charles and I had collaborated on several projects before and I knew he was just the partner I needed. Our partnership has been a cornerstone for the lab ever since.

P&CatTdad-touchup

Directors Peter Lehman and Charles Chamberlin pose in front of the Schatz Solar Hydrogen Project in 1995.

That first project, the Schatz Solar Hydrogen Project at HSU’s marine lab in Trinidad, turned out to be just the beginning. When the fuel cell we bought for the project didn’t work, Mr. Schatz told me, “Build your own.” So Charles and I wrote a proposal to build a fuel cell lab and begin work to develop our own fuel cell. Along came another small envelope, this time with a check for $300,000 and a small handwritten note that said, “Get to work!”

Directors

Director Arne Jacobson with Charles and Peter at SERC’s 20th Anniversary party.

That experience led us to many more hydrogen projects and to many places. We introduced America’s first PEM fuel cell car and built the first hydrogen fueling station in the late 1990s, near Palm Springs in southern California. We built fuel cell power systems for remote use in Alaska and for a radio telephone system in Redwood National Park. We’ve installed fuel cell test stations in a number of universities, including most recently in Abu Dhabi. Four corporations have licensed our fuel cell patents, seeking to commercialize the technology.

Fast forward to today and our energy work has broadened considerably. We’re involved in developing standards for LED lighting products and in providing energy access in Africa and Asia. We’ve branched out into bioenergy, with projects to install a biomass-fired fuel cell power system here locally and another to characterize technologies such as biochar and torrefaction, in an effort to reduce the cost of getting energy rich biomass to market.  We’re also involved in helping to plan electric and alternative fuel infrastructure here in northern California and in India. It’s amazing how far we’ve come.

It’s the people at SERC who have made this happen. Over these 25 years, 145 people have contributed their efforts to our enterprise.  We’re lucky that one of them, Arne Jacobson, returned to SERC after getting his PhD to become our director and to lead our international work. Many more have gone on to interesting and important energy careers around the world.

We have much to celebrate as we look back over a quarter of a century. And we can be proud that we’re continuing our work to make this a greener planet.

SERC Co-Hosts Woody Biomass Workshop

Biomass energy is an important resource in Humboldt County and other heavily forested regions. Woody biomass residues include waste materials generated during timber harvest operations. Often referred to as slash piles, these materials are typically piled and burned in the forest. Small trees, limbs and brush cleared in fire hazard reduction efforts are another source of biomass that are often piled and burned. Under the right set of circumstances, these materials can be processed, transported and used as a renewable fuel source, providing environmental and economic benefits.

The Woody Biomass Utilization Group at the University of California, Berkeley has been working for many years to further the use of biomass energy. To accomplish this, they have hosted regional workshops throughout the state since 2006. This past fall they held a series of regional workshops with a focus on “community scale wood bioenergy.” SERC co-hosted one of these workshops at the Humboldt Bay Aquatic Center in Eureka.

The biomass workshop featured presentations and site tours, including the Community Scale Biomass Power System at Blue Lake Rancheria.

The biomass workshop featured presentations and site tours, including the Community Scale Biomass Power System at Blue Lake Rancheria.

November 7th was a beautiful day on the Eureka waterfront, and we had an enthusiastic turnout of more than 60 attendees, as well as a full slate of dynamic speakers. One key topic at the workshop was an update on California Senate Bill 1122. This bill, enacted in September of 2012, directs investor-owned utilities in California to purchase 50 MW of biomass power from community-scale, distributed energy systems of less than or equal to 3 MW. The woody biomass fuel must be sourced from by-products of sustainable forest management, such as materials generated during fire threat reduction activities. This bill will create new opportunities for the development of distributed biomass energy systems.

Other topics covered during the workshop included siting and permitting, project financing, feedstock and technology, and regionally specific topics such as local case studies and projects.  Presentations on local projects in which SERC is significantly involved included the RePower Humboldt planning project, which identified biomass energy as an important local renewable energy resource; the Blue Lake Rancheria biomass gasification project, where SERC is leading the design and installation of a local distributed biomass energy system; and the HSU Biomass Research and Development Initiative project, which is soon to get underway.

Biomass Energy Workshop

SERC is proud to be co-hosting a biomass energy workshop along with the University of California’s Woody Biomass Utilization Group.  The workshop will take place on November 7th from 8:30 AM to 5 PM at HSU’s Humboldt Bay Aquatic Center in Eureka.  Recent energy planning work conducted by SERC identified biomass as a key renewable energy resource for our North Coast communities.  The goals of this workshop will be to:

  1. Increase practical understanding of critical environmental, engineering, and economic considerations for developing and retaining wood bioenergy systems.
  2. Provide a forum for stakeholders to identify issues, forge partnerships and articulate a vision for the role of wood bioenergy in forest restoration and management at the regional scale.

For more information and to register visit the workshop website here.

A Message from the Director

AJ headshot 3We have completed the transition from summer to fall here in far northern California, and – while it has been clear and sunny for the past few days – we recently had the first heavy rainstorm of the season. As the seasons change, we remain busy at SERC with a diverse portfolio of clean energy projects. The selection of articles in this newsletter reflects this diversity.

In the lead article, Richard Engel reports on a project that is in line with our broader work aimed at enabling energy access in off-grid areas ranging from South Asia to East Africa. We are also happy to report on recent progress in our biomass energy collaboration with Renewable Fuel Technologies (RFT). We look forward to deepening our work with RFT and others in the field as we expand our efforts in this arena.

Several other articles reflect our long tradition of work related to clean transportation. We were pleased to be in a position to fuel the hydrogen fuel cell vehicle that SERC alum Anand Gopal and his wife Liz Pimentel drove up from the Bay Area. We hope this event will be the first of many such occurrences made possible by our hydrogen vehicle fueling station.

We are also pleased to extend our plug-in electric vehicle (PEV) charging infrastructure planning work from California to India. The work in New Delhi, which involves collaboration with Anand Gopal and colleagues from Lawrence Berkeley National Laboratory, will require analysis in a new and complex setting involving very different driving patterns and electricity infrastructure. We at SERC always like to get involved in new and challenging work, and we hope to contribute meaningfully to the wider effort to enable cleaner transportation systems in New Delhi and beyond.

I will close by welcoming several new members to the SERC team. This August, Nick Bryant of Washington state and Amit Khare of New Delhi, India started work at SERC. They are also pursuing master’s degrees in the Energy Technology and Policy (ETaP) program here at HSU. We also have three additions to our docent team, including Yaad Rana, Onomewerike “Robo” Okumo, and Jake Coniglione. All are undergraduate students in the Environmental Resources Engineering program. It is great to have these students on board.

SERC Completes Instrumentation of RFT Torrefier

torrefier photo

The newly-installed air-measurement devices.

In September, Greg Chapman and I made our second trip to Renewable Fuel Technologies (RFT) to continue work on measuring the energy and mass balances of RFT’s pilot-scale torrefier. The one-ton-per-day torrefier produces a charcoal-like product called bio-coal from wood waste by heating biomass to 300°C in the absence of air. The bio-coal can then be co-fired in a power plant with standard fuels such as coal or wood chips to generate renewable electricity. SERC’s measurements of the device will aid in designing the torrefier for mobile, stand-alone operation and optimizing the technology for commercial use in converting timber waste into very low carbon renewable energy. This work is funded by the California Energy Commission.

torrgas-sample-condenser

The newly-installed torrgas sample condenser.

During this visit, we installed new instrumentation on the pilot-scale torrefier to measure power, air and gas flows.  Greg also designed, built, and installed a condenser to sample the condensable portion of the gas by-product of the torrefaction process, called torrgas, which is used to generate heat as a key part of RFT’s efficient design.  An initial test run of the system using the new instrumentation was successful, and planning is now underway to procure and transport several tons of wood chips to RFT, which will be used in a series of torrefaction experiments under varying conditions to collect detailed data on the operating characteristics of the system.

SERC Receives Funding for Bio-Energy Research

A $95,000 California Energy Commission (CEC) grant enables SERC, in partnership with Renewable Fuel Technologies (RFT) of San Mateo, to continue experiments aimed at converting slash from logging and fuel reduction efforts into energy dense bio-coal. RFT has developed a pilot-scale, one ton per day torrefier which produces bio-coal from timber waste by heating biomass to 300°C in the absence of air. Bio-coal can be co-fired in a power plant with standard fuels such as coal or wood chips to generate renewable electricity.

This new project involves measuring the energy and mass balances in RFT’s pilot-scale unit. These measurements will aid in designing the torrefier for mobile, stand-alone operation and optimizing the technology for commercial use. Mobility is considered crucial if torrefier technology is to become commercially viable. A good deal of forest debris lies in remote, difficult to reach locations, generating high logistics overhead. By making biomass three times as energy dense, the mobile torrefier would provide a far more economical approach as well as a major incentive to commercial conversion of timber waste into very low carbon renewable energy.

The CEC also awarded SERC Faculty Research Associate Dr. David Vernon $94,993 to examine the use of sugars from biomass to offset fossil fuel use, increase efficiency and reduce emissions in combustion processes. This work uses plant-derived sugars in chemical reactions that consume waste heat to produce a hydrogen-rich gas that can be mixed with traditional fuels to promote more complete combustion. This process has the potential to replace up to 50% of the fossil fuel and to increase efficiency by as much as 25%. It could also reduce emissions of NOx by over 95% while maintaining or reducing emission levels of other pollutants. If successful, the technology developed from this work could be retrofit onto existing gas turbines and engines in power plants and gas pipeline compressor stations without requiring costly modifications to the existing systems.

Graduate Student Assistants Mark Severy and Billy Karis (left) and Faculty Research Associate David Vernon test aqueous phase reformation reactions.

Graduate Student Assistants Mark Severy and Billy Karis (left) and Faculty Research Associate David Vernon test aqueous phase reformation reactions.

Specifically, this project explores the use of aqueous phase reformation reactions that directly process sugars and operate at lower temperatures than the gas phase reformation reactions that are being investigated for waste heat recovery elsewhere. Sugars can be produced from virtually any cellulosic biomass, including waste resources such as forestry slash, lumber mill waste, crop residues, portions of municipal solid waste, yard waste, etc. By operating at lower temperatures, aqueous phase reformation has the potential to recover significantly more waste heat compared to gas phase reformation reactions.