Northwest California Alternative Fuels Readiness Project

With funding from the California Energy Commission under solicitation PON-13-603, the Redwood Coast Energy Authority (RCEA) and SERC began a two-year planning process in the spring of 2014. Key project partners were the Mendocino Council of Governments, the North Coast Unified Air Quality Management District, and the Siskiyou County Economic Development Council (SCEDC). As this project nears completion, we reflect on the accomplishments of the project and next steps for increased regional adoption of low carbon transportation fuels.

Background: “The goal of this project [was] to create an alternative fuel readiness plan through coordinated efforts in the Northwest Region,”[1] which for this project consisted of the counties of Del Norte, Humboldt, Mendocino, Siskiyou, and Trinity. The readiness plan was to “include a strategic assessment of the challenges and opportunities for the adoption of alternative fuels and implementation of targeted outreach programs for fuels.”[2]

The project consisted of six main tasks:

  • assess the existing status of and potential for future deployment of fuels
  • analyze existing and potential incentives structures
  • identify strategies for increased procurement and commercialization of fuels
  • review existing training materials targeted to relevant stakeholders and identify needs and barriers
  • develop materials and strategies that communicate the benefits of low carbon fuels to targeted stakeholder groups
  • create a complete, comprehensive, and detailed readiness plan for the region.

Accomplishments and Results: As reported in the Spring 2015 newsletter, SERC addressed the first task through the development of a simulation model that explores marginal abatement cost curves in order to guide regional investment in low carbon fuels. The model used the statewide Low Carbon Fuel Standard (LCFS)  target of a 10% reduction in transportation fuel carbon intensity by 2020 (see Figure below). The key conclusions of this analysis are

  • Electric vehicles currently present the least incremental cost across commercially available fuels and technologies, in terms of infrastructure capital cost, vehicle capital cost, and vehicle cost of ownership.
  • Due to market limitations there is no single “silver bullet” fuel. Regional investment in a variety of low carbon fuels is needed to meet the 2020 LCFS target.
  • Portfolio-wide average marginal cost of carbon abatement (as shown in is projected to be around $200 per metric ton of carbon dioxide equivalent, and could very well exceed this.

AFRimage2

The results of this simulation model were used to develop regional estimates of the direct impact to the transportation sector should model results be fully implemented. These estimates show that 17% of passenger vehicles and 2.7% of all other on-road vehicles may be impacted, resulting in a 6% increase in electricity consumption and a displacement of 10% of total gallons of gasoline and diesel currently consumed in the region. Furthermore, over 300 public electric vehicle parking stalls may be needed along with 19 new or retrofitted liquid fueling stations representing 9% of existing stations in the region. The projected incremental societal cost over the five-year period between 2015 and 2020 is $43 million (in 2015 dollars), which averages to $1,600 per vehicle across all fuel and vehicle types modeled.

In parallel to the above modeling effort, the project team formed three working groups that informed the planning process: a strategic planning working group, a fuel distributor working group, and a training materials working group. The working groups helped identify barriers and potential solutions to increased low carbon fuel adoption as well as guided the structure of the readiness plan. The input from these stakeholders, along with an extensive literature review, resulted in the identification of 22 specific barriers and 69 potential actions to address these barriers.

In addition, project partners developed outreach materials to be used to engage with and inform a wide array of stakeholder groups, focusing mainly on local government entities and fleet managers. Numerous outreach efforts were also conducted, including extensive engagement with public and private fleet managers and local government agencies.

Readiness Plan and Next Steps: The above efforts have been synthesized into a detailed regional readiness plan which is now available. The primary audience is local government, but the plan contains useful information for fuel distributors and fleet managers and contains recommendations for action across all stakeholder groups including state policy makers.

Project partners also identified the Department of Energy Clean Cities program as a key next step that could continue the development and implementation of the readiness plan. To this end the project team held a strategic networking event in February in Eureka that was simulcast to Redding and Ukiah, California. The goals of the event were twofold:

  • bring local government stakeholders up to speed on state and local efforts to accelerate the adoption of low carbon transportation fuels and vehicles
  • explain the Clean Cities program, outline the potential benefits of this program for the region, and pursue stakeholder interest and/or commitments to the formation of a Clean Cities Coalition.

A total of 20 different stakeholder agencies were represented at the event across seven counties, two CalTrans Districts, and two Assembly Districts. All stakeholder representatives expressed positive interest in the development of a Clean Cities Coalition in the North State region and found the event informative. Commitments to further action were made regarding participation in future events to solidify details and next steps. Two follow-up meetings were held in May and June with a sub-group of participants during which co-coordinator commitments were confirmed from SCEDC and RCEA. A Clean Cities Coalition application to the DOE is currently in development and is expected to move forward.

Conclusion: It is clear the proposed LCFS target is not realistic for the region in the near future given the level of investment and action required over such a short time frame. However, the readiness plan provides a useful guidepost for regional stakeholders, and quantifiable and actionable steps that can be taken now and well past the LCFS target date of 2020. In addition, the successful formation of a Clean Cities Coalition in the region is expected to increase the impact of this project and will hopefully lead to future funding and action in the region.

For more detailed information and access to project reports visit http://redwoodenergy.org/current-projects/alternative-fuels

AFRimage

[1] California Energy Commission Agreement Number ARV-13-012.
[2] Ibid

Accelerating the Adoption of Low Carbon Transportation Fuels

The transportation sector accounts for 37% of all tracked greenhouse gas emissions1 in California, making this a key focus sector in statewide efforts to reduce greenhouse gas emissions. The California Energy Commission has aggressively funded the Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP) through which SERC has received funding for numerous planning and implementation projects over the last four years.

Transportation-countiesSERC is continuing this important work through three more planning and implementation projects funded through ARFVTP in partnership with the Redwood Coast Energy Authority and the Siskiyou County Economic Development Council:

  • The North Coast Plug-In Electric Vehicle Readiness Plan Implementation Project, which covers Del-Norte, Humboldt, and Trinity Counties. This project will address permitting and code barriers to the installation of electric vehicle charging stations (EVCSs), conduct micro-siting efforts to identify viable locations for EVCSs, and engage in education and outreach efforts.
  • The Plug-in Electric Vehicle Readiness Glenn-Colusa Planning & Upstate Implementation Project, which covers Colusa, Glenn, Siskiyou, Shasta, and Tehama Counties. For this project we will develop a readiness plan for Glenn and Colusa Counties, address permitting and code barriers to the installation of EVCSs, conduct micro-siting efforts to identify viable locations for EVCSs, and engage in education and outreach efforts.
  • The North Coast and Upstate Fuel Cell Readiness Planning Project, which covers Colusa, Del Norte, Glenn, Humboldt, Lake, Mendocino, Siskiyou, Shasta, Tehama, and Trinity Counties. This project will develop a readiness plan for the ten county region to prepare for the accelerated deployment of hydrogen fuel cell vehicles.

These projects build upon and expand the geographic reach of past efforts.

Transportation

Alternative Fuel Readiness Planning

Last year, in partnership with the Redwood Coast Energy Authority (RCEA) and other key regional partners, SERC embarked on a two-year Alternative Fuels Readiness Planning (AFRP) project funded by the California Energy Commission (CEC). This project seeks to assess the potential for development of alternative transportation fuels such as electricity, hydrogen, and some biofuels in the North Coast region of California.

The goal of the SERC-led analytical work is to explore pathways for the North Coast region to achieve the 10% reduction in average fuel carbon intensity by 2020 mandated under California’s Low Carbon Fuel Standard (LCFS). To this end, we have recently finished developing a simulation model, drawing on price data for fuels, vehicles, and distribution infrastructure, as well as analysis of regional transportation trends and fuel life cycle greenhouse gas (GHG) emissions. The model allows us to simulate the economic efficiency of GHG reduction via each fuel pathway individually as well as for a suite of technologies deployed to meet the LCFS target. It offers a nuanced understanding of the systems in question, enabling us to evaluate the impact of changing fuel and vehicle prices, electric grid carbon intensities, and other factors on the cost of GHG abatement through alternative fuel deployment.

Outputs of this analysis are being used by RCEA as it engages with both public and private sector transportation energy stakeholders across the region. This collaboration will lead to the development of a strategic plan for deploying a more sustainable transportation system in the North Coast of California.

Marginal Abatement Cost (MAC) for each of the fuel pathways considered. Presented here is aggregate marginal cost above a conventional fuel/vehicle baseline. These costs include fuel cost as well as any incremental vehicle or distribution infrastructure cost required for a given fuel type.

Marginal Abatement Cost (MAC) for each of the fuel pathways considered. Presented here is aggregate marginal cost above a conventional fuel/vehicle baseline. These costs include fuel cost as well as any incremental vehicle or distribution infrastructure cost required for a given fuel type.

 

Helping California Pursue Greenhouse Gas Reductions in the Transportation Sector

The State of California has set ambitious goals for greenhouse gas emission reductions:  a reduction to 1990 levels by the year 2020, and to 80% below 1990 levels by 2050.  According to the California Air Resources Board (CARB), 28% of the State’s total greenhouse gas emissions are attributable to light-duty passenger vehicles. Understandably, the State has placed significant focus on reducing emissions in the transportation sector, with a key strategy being the widespread deployment of zero emission vehicles (ZEVs). This includes both plug-in electric and hydrogen fuel cell electric vehicles (FCVs), two technology areas where SERC has significant expertise.

As part of their policy analyses, CARB staff estimated that ZEV market penetration levels over the next three decades will need to reach dramatic levels in order for us to reach our greenhouse gas emission reduction goals. The figure below depicts a scenario where FCVs and battery electric vehicles (BEVs) make up a whopping 87% of the light duty auto fleet in 2050, with the remainder of the fleet being composed of plug-in hybrid electric vehicles (PHEVs), hybrid electric vehicles (HEVs), and conventional vehicles.

Target Market Penetration Levels for Passenger Vehicles

State sponsored efforts to encourage and even require the widespread deployment of ZEVs include regulations requiring auto manufactures to sell a minimum number of ZEVs in the State; consumer rebates for ZEV purchases; funding to support local planning for ZEVs and associated fueling infrastructure; and funding to support the installation of electric vehicle (EV) charging stations and hydrogen fueling stations.

Many of SERC’s projects over the last two decades have supported these efforts. In the early days (circa 1990), SERC developed a small fleet of FCVs and a hydrogen fueling station for SunLine Transit in Thousand Palms, CA. Later SERC provided technical support for AC Transit’s fuel cell bus program, and delivered hydrogen safety trainings for emergency first responders for FCV projects around the country. SERC designed and installed a hydrogen fueling station at Humboldt State University, which has enabled SERC to operate, test, and demonstrate a Toyota Highlander FCV for the last five years.

Participants check out EVs like this Nissan Leaf at the Upstate EV101 workshop in Redding, CA.

Participants check out EVs like this Nissan Leaf at the Upstate EV101 workshop in Redding, CA.

In the last few years, SERC has been involved in several California Energy Commission funded projects to support the deployment of ZEVs. These efforts have included Plug-In Electric Vehicle Readiness projects for the North Coast region (Humboldt, Trinity, and Del Norte counties) and the Upstate region (Shasta, Siskiyou, and Tehama counties). These two projects featured the development of plans to install EV charging stations throughout these regions. SERC’s work in these locales continues as we identify additional locations for EV charging stations and support the design and installation of many of these stations. In addition, we are working on a project to assess the opportunities and barriers associated with deployment of a wide array of alternative fuel vehicles in the North Coast region. This includes not only EVs and FCVs, but also biofuel and natural gas fueled vehicles.

SERC has also recently partnered with the Transportation Sustainability Research Center at UC Berkeley and others to establish the Northern California Center for Alternative Transportation Fuels and Advanced Vehicle Technologies (NorthCAT).  NorthCAT will focus on education, training, demonstration, and deployment of alternative transportation fuels and advanced vehicle technologies in the Northern California region.

Watch future newsletters for updates on these projects as SERC continues to help the north state region move toward a low-carbon, sustainable transportation future.

Assessing the Costs and Benefits of Alternative Fuel Pathways

AFRP logo-wpThis summer, in partnership with the Redwood Coast Energy Authority (RCEA) and other key regional partners, SERC embarked on a two-year Alternative Fuels Readiness Planning (AFRP) project funded by the California Energy Commission (CEC). This project seeks to assess the potential for development of alternative transportation fuels such as electricity, hydrogen, and some biofuels in the North Coast region of California. Each of the counties in the region (Humboldt, Mendocino, Del Norte, Trinity and Siskiyou) presents different challenges with respect to vehicle fleet, terrain and fuel demand. SERC is leading the analytical work, focusing on the costs and benefits of various alternative fuel pathways, and RCEA will lead the stakeholder engagement and strategic planning process.

The goal for the analytical work is to explore ways for the North Coast region to achieve the 10% reduction in fuel carbon intensity by 2020 mandated under California’s Low Carbon Fuel Standard (LCFS). The optimal mix of alternative fuel vehicles and refueling infrastructure will depend on a variety of factors including commodity prices, policy implementation, carbon markets, electric grid mix, incentive structures, and fuel technology development. The simulation model being developed by SERC will enable local and state agencies and other partners to target incentives and investments in light of these realities.

Our first task was to figure out how much gasoline and diesel is being consumed on a yearly basis in each of the five counties. This involved collecting data from Air Quality Management Districts, CalTrans, the CEC, and other sources that track transportation markets and emissions. Additionally, we have catalogued existing alternative fueling stations (such as electric vehicle chargers and biodiesel fueling stations) in the region, and any measurable amounts of fuel they dispense.

With fuel quantities in hand, we will soon complete our simulation model, conduct the alternative fuels portfolio analysis, and then explore the potential impact of incentives on the adoption of alternative fuels. Ultimately, we will present the products of our work to regional stakeholders in the context of a strategic planning process. Using the stakeholders’ input, the team will set regional goals for alternative fuel adoption and define a roadmap to achieving a more sustainable transportation system.

A Message from the Director

AJ headshot 3Spring is a time of renewal and celebration. Here at SERC, we have much to celebrate as we reach our 25th anniversary. I joined SERC as a graduate student in 1993, a few years after it was founded. When I look back, I am amazed at all that this Center has accomplished. It is especially gratifying to review the list of SERC alumni and to reflect on where they are now. To date, 145 people have either worked or volunteered at SERC, and many are now working in the clean energy field. Their collective activities and accomplishments have made a real difference in the world. It will be great to see all of the alumni who can make it to the anniversary party on May 16.

Speaking of SERC alumni, two key SERC staff members are about to make the transition. Robert Hosbach, an integral member of our energy access and off-grid lighting team, has accepted a position working in the energy efficient appliance standards group at Lawrence Berkeley National Laboratory. Richard Engel, a senior research engineer who has been with SERC for over 14 years, is also moving on. Both will be deeply missed, and we wish them well on the next steps in their journey.

Although they cannot be replaced, we are in the process of hiring several new team members. We are excited to be able to announce that Dave Carter has accepted our offer to join SERC as a senior research engineer. Dave is a licensed civil engineer with almost a decade of professional experience. He is also an alumnus of SERC, having worked here as a student and just after his graduation back in 2004 and 2005. We are also in the process of hiring for four other positions. We are selecting candidates for two staff positions and one student position associated with the Lighting Global program and other activities related to energy access for low-income people living in off-grid areas. We are also reviewing applications for a position focused on alternative fuels for transportation.

I will close by thanking our Advisory Board for their input during a very productive meeting on April 11. This year’s meeting was our second on-campus session, and we are very pleased with the support and guidance that the board is providing. We are already looking forward to the next meeting.

Goodbye until next time.

SERC to Celebrate Our 25th Anniversary

On the afternoon of Friday, May 16, Schatzers from far and wide will gather at Freshwater Park outside Eureka to commemorate the silver anniversary of the Schatz Energy Research Center. Catered food and general merriment will help us celebrate 25 years of clean and renewable energy work.

It all began with a phone call in May of 1989. Mr. Schatz called me up to ask questions about a proposal I had sent him to build a system to demonstrate using hydrogen to store solar energy. He had solicited ideas about hydrogen research from HSU and when I heard about the possibility, I sent him a proposal the next day.

Mr. Schatz didn’t waste words. He started the conversation by saying, “This is Mr. Schatz. You sent me a proposal. I have questions.” Our call lasted over an hour and when it was over, I suggested sending him a revised proposal based on our conversation. He agreed and I did. Less than two weeks later, a small envelope with a check for $75,000 appeared in my mailbox and the great adventure that has become the Schatz Center had begun.

The first thing I did was to knock on Charles Chamberlin’s door. Charles and I had collaborated on several projects before and I knew he was just the partner I needed. Our partnership has been a cornerstone for the lab ever since.

P&CatTdad-touchup

Directors Peter Lehman and Charles Chamberlin pose in front of the Schatz Solar Hydrogen Project in 1995.

That first project, the Schatz Solar Hydrogen Project at HSU’s marine lab in Trinidad, turned out to be just the beginning. When the fuel cell we bought for the project didn’t work, Mr. Schatz told me, “Build your own.” So Charles and I wrote a proposal to build a fuel cell lab and begin work to develop our own fuel cell. Along came another small envelope, this time with a check for $300,000 and a small handwritten note that said, “Get to work!”

Directors

Director Arne Jacobson with Charles and Peter at SERC’s 20th Anniversary party.

That experience led us to many more hydrogen projects and to many places. We introduced America’s first PEM fuel cell car and built the first hydrogen fueling station in the late 1990s, near Palm Springs in southern California. We built fuel cell power systems for remote use in Alaska and for a radio telephone system in Redwood National Park. We’ve installed fuel cell test stations in a number of universities, including most recently in Abu Dhabi. Four corporations have licensed our fuel cell patents, seeking to commercialize the technology.

Fast forward to today and our energy work has broadened considerably. We’re involved in developing standards for LED lighting products and in providing energy access in Africa and Asia. We’ve branched out into bioenergy, with projects to install a biomass-fired fuel cell power system here locally and another to characterize technologies such as biochar and torrefaction, in an effort to reduce the cost of getting energy rich biomass to market.  We’re also involved in helping to plan electric and alternative fuel infrastructure here in northern California and in India. It’s amazing how far we’ve come.

It’s the people at SERC who have made this happen. Over these 25 years, 145 people have contributed their efforts to our enterprise.  We’re lucky that one of them, Arne Jacobson, returned to SERC after getting his PhD to become our director and to lead our international work. Many more have gone on to interesting and important energy careers around the world.

We have much to celebrate as we look back over a quarter of a century. And we can be proud that we’re continuing our work to make this a greener planet.

Regional Sustainable Transportation Planning

This winter, SERC was part of two groups that won proposals from the California Energy Commission (CEC). The first is a regional alternative fuels planning project for Northwest California (including the counties of Del Norte, Humboldt, Mendocino, Trinity, Siskiyou, and Shasta). In partnership with the Redwood Coast Energy Authority, this effort will build upon our electric vehicle planning work and evaluate the opportunities and challenges for our region to transition away from a petroleum-fueled transportation system. All alternative transportation fuels will be included in the evaluation: electricity, hydrogen, biofuels, and compressed natural gas. The project will involve substantial engagement with regional stakeholders and include outreach, education, and training for planners, policy-makers, and fleet managers.

The second proposal funded by the CEC is to establish the Northern California Center for Alternative Transportation Fuels and Advanced Vehicle Technologies (North CAT). Led by U.C. Berkeley and with SERC as the northern satellite office, the Center will become a clearinghouse for outreach, training, demonstration, and dissemination of best practices surrounding alternative fuel transportation technologies. To accommodate this effort, we will be expanding the amount of office space at SERC. The funding will also be used to cover associated overhead and to coordinate with our Bay Area partners. Participation in the North CAT will increase the visibility of SERC’s sustainable transportation activities and open up exciting opportunities to advance alternative fuels throughout Northern California.