UNCDF Energy Ladder Research

The first and second phases of the Energy Ladder Research project, a yearlong study in rural Uganda funded by the United Nations Capitol Development Fund CleanStart Programme, are nearly complete. The study aims to investigate end-user patterns of adoption of off-grid solar energy products in one district each in the central and the eastern regions of Uganda. Our first project announcement can be accessed here.

In the first phase of the project, Arne Jacobson and I organized a stakeholder workshop in Kampala, and visited and built familiarity with the districts under this study. During this phase, we also pilot tested the household phone survey and mapped the off-grid solar product distribution chain in these districts.

In the second phase of the project, I trained the survey team from the Center for Integrated Research and Community Development Uganda (CIRCODU), a Uganda-based organization specializing in field research on topics such as off-grid solar energy, the context and role of research, business models of data partners, and best practices for conducting interviews. During this phase, the CIRCODU team and I also initiated and completed the baseline surveys, which comprised short telephone interviews with 614 off-grid solar product buyers and longer face-to-face interviews with 117 of these respondents. This strategy helped save cost associated with implementing face-to-face interviews with a wider sample and at the same time provided the research depth that comes with in-person interviews, albeit for a smaller sub-sample. The phone surveys were used to gather critical data required for the study and the face-to-face surveys for verifying some of the responses received from phone surveys and for diving deeper into specific topics.

In the next stages of the project, I will prepare baseline survey data for analysis, consolidate early insights from the project based on the work so far, and prepare end-line surveys due to be implemented in January and February of 2017.

Surveyors from CIRCODU interview an off-grid solar product customer, Luwero, Uganda

Surveyors from CIRCODU interview an off-grid solar product customer, Luwero, Uganda

UNCDF-2

Example of an electronics shop that also stocks solar components, Luwero, Uganda.

Blue Lake Rancheria Microgrid

Since September, SERC’s microgrid team has been engaged in intensive design work with partners Blue Lake Rancheria (BLR), Pacific Gas & Electric (PG&E), Siemens, Tesla, REC Solar, GHD, Idaho National Labs (INL), Robert Colburn Electric, and Kernen Construction. Commissioning of the microgrid is scheduled for October 2016, and we are keenly aware of how much work there is still to do.

Meeting the commissioning schedule requires strategic planning, hard work, and close coordination. Our implementation methodology involves an integrated design approach, with engineers and contractors collaborating on development construction plans as well as equipment and operational specifications. Design reviews and cost checks are programmed into the schedule at the 50% and 90% levels to build and maintain consensus among stakeholders and to determine if value engineering is required as we work towards construction-ready plans. One critical path is obtaining the necessary approvals from PG&E; we have worked to expedite aspects of that process that are under our control.

We accomplished several important milestones in January. The 50% design review and cost check were conducted, and the results indicate that no major course corrections are needed. Our Early Start design package was released for construction on schedule. We also submitted our interconnection application to PG&E.

Looking ahead, we are scheduled to release the design for construction in June, which is also when Siemens is scheduled to complete Factory Acceptance Testing on the microgrid controller. INL will then conduct hardware-in-the-loop testing of the controller in their real-time digital simulator prior to installing it at BLR in September. Meanwhile, construction will be ramping up as the weather dries out this spring.

BRDI Waste to Wisdom: Results from Preliminary Biomass Briquetting

The Biomass Research and Development Initiative (BRDI) Waste to Wisdom project is studying various pathways to increase the value of forest residuals and decrease transportation costs to bring this underutilized resource into the renewable energy market. Densifying waste biomass into briquettes during forest operations may achieve both of these goals by converting it into a valuable heating fuel that is easily transported due to its high density and low moisture content.

SERC Project Manager Dave Carter operates the briquetter.

SERC Project Manager Dave Carter operates the briquetter.

Last April, SERC engineers, alongside partners from Pellet Fuels Institute and RUF Briquetting Systems, operated a commercial briquetter with a variety of feedstocks at Bear Mountain Forest Products’ manufacturing plant in Cascade Locks, Oregon. Electricity consumption and biomass throughput data were collected in the field, while a pallet containing feedstock and briquette samples was shipped to SERC for material analysis. Back at SERC’s lab, the samples were sent through a suite of tests to assess the quality of each briquette and determine which feedstock properties influence the end product’s characteristics, such as density, durability, grindability, and moisture absorption.

Briquettes produced from chipped biomass exit the briquetting machine.

Briquettes produced from chipped biomass exit the briquetting machine.

Results show that this briquetting system increases the volumetric energy density of chipped biomass by nearly 250%, producing briquettes with an average packing density of 720 kg/m3. Feedstocks with moisture content exceeding 15% produce lower density briquettes, which expand in height after exiting the briquette press. High moisture content, however, does not significantly impact briquette durability. Instead, the feedstock’s particle size distribution has the greatest effect on briquette durability. Feedstocks comprising mainly large particles, especially chipped biomass, do not bind together as well as fine or ground particles. To improve durability, chipped biomass can be combined with sawdust, which increases briquette durability two-fold and results in briquettes with a binding strength similar to those produced from pure sawdust.

These results help frame and guide our future work with biomass densification. In the next stages of this project, the multidisciplinary BRDI research team will investigate whether the upstream energy investments in drying and particle size reduction are worth the payback when bringing briquettes to the heating market.

North Coast EV Charging Infrastructure

EVCSmapThe first phase of the installation of electric vehicle charging stations (EVCSs) for the Redwood Coast Electric Vehicle Charging Network (REVNet) is nearly complete. REVNet is a coordinated effort led by the Redwood Coast Energy Authority (RCEA) to jumpstart public charging infrastructure on the North Coast. Over the last year, 10 EVCSs have been installed at nine locations across Humboldt County: Trinidad, McKinleyville, Arcata, Eureka (two stations), Willow Creek, Ferndale, Fortuna, and Rio Dell.

In 2012, SERC partnered with the RCEA in the development of a Readiness Plan for the North Coast region of California. One of the key results of this work was the projected number of publically accessible EVCSs needed to support an on-road fleet comprised of 2% electric vehicles (approximately 3,000 vehicles). In 2013, SERC again partnered with RCEA in the pursuit of funding for the first installation phase of charging stations in Humboldt County, which was successfully awarded under CEC grant ARV-13-029.

A dual head 7.2kW charging station installed at The Greenway Building in Arcata.

A dual head 7.2kW charging station installed at The Greenway Building in Arcata.

This project involves many partners, with SERC coordinating the installation effort as Owner’s Engineer for RCEA. Dave Carter is managing construction, with Kristen Radecsky and Jerome Carman supporting. RCEA and SERC partnered with OurEvolution Energy & Engineering to lead the civil engineering tasks, and GHD to review electrical plans. McKeever Energy & Electric Inc., who partnered with DCI Builders for civil contracting work, won the public bid for an electrical contractor to install EVCSs at seven of the nine sites. The other two sites, McKinleyville Shopping Center (owned by Pierson Company) and St. Joseph Hospital, used their own electrical contractors, Ambrosini and Sons and Colburn Electric respectively.

RCEA is piloting a non-profit ownership model. The stations are planned to be operational in March.

BRDI Waste to Wisdom: Summer 2015 Testing

Late last spring, the BRDI team began acquiring testing apparatus and field equipment needed for torrefaction, drying, and briquetting of biomass at a test site located on Green Diamond property at Big Lagoon. The area, a demolished mill site, consisted of dilapidated cement, old iron railings, and overgrown shrubs. Drawings had already been prepared for electrical lines, equipment placement, and emergency evacuation locations for the test site, so site set up proceeded quickly.

From right to left: the torrefier trailer, the biomass drying unit, and the homemade chip screener used to sift feedstocks to acceptable chip sizes.

From right to left: the torrefier trailer, the biomass drying unit, and the homemade chip screener used to sift feedstocks to acceptable chip sizes.

The torrifier was a pilot unit custom-built by Norris Thermal Technologies (NTT) and hauled on a trailer over 2000 miles from Indiana. This was the largest piece of equipment on site and was the main focus for our summer testing of feedstocks at various temperatures and dwell times. NTT also provided a drying unit, which was purchased by BRDI for future biochar field-testing. This is the same type of drying unit used in many industries, including food and agriculture. BRDI’s application of the dryer was unique in that it used waste heat from the torrifier to dry the feedstocks to varying degrees of moisture content. The team found that moisture content in the woodchips, hard to control due to the combination of summer rains, early fog, and blazing mid day heat, had a significant impact on torrefaction. Moisture content in samples also affected the briquetting of the woodchips. Dry feedstocks of small particle sizes were observed to form dense briquettes of uniform size. Briquettes made of larger wet chips tended to crumble easily, and if the moisture content was high, the bricks expanded and deformed. In addition, because water is incompressible, too much moisture could damage the process mold and hydraulic pistons used to densify the woodchips into briquettes.

The summer testing team from left to right: Yaad Rana, Andy Eggink, David Carter, Greg Pfotenhauer, Kyle Palmer, Anna Partridge, and Marc Marshall.

The summer testing team from left to right: Yaad Rana, Andy Eggink, David Carter, Greg Pfotenhauer, Kyle Palmer, Anna Partridge, and Marc Marshall.

Overall, testing was successful and the BRDI team has a plethora of samples to analyze in the lab. An exciting year is expected, as analysis is performed in preparation for continued testing using full-scale equipment next summer.

NorthCAT

NORTHCAT-LOGO-finalcolors5-20-15RGB-01SERC is the home of the new North State Regional Office of the Northern California Center for Alternative Transportation Fuels and Advanced Vehicles (NorthCAT).  The formation of NorthCAT was made possible by a grant from the California Energy Commission. The UC Berkeley Institute of Transportation Studies is the project lead and, along with SERC, has joined with numerous other project partners to offer education, training, demonstration, and project deployment services to the Northern California region, which stretches from the San Francisco Bay Area north to the Oregon Border. One of SERC’s key roles is to serve the rural North State region.

SERC has just completed an office space expansion to house the NorthCAT office. A space designed as a hydrogen generation and storage room but used for general storage has been converted into a five-person workspace. All that remains is to add a sign on the door reading “NorthCAT North State Regional Office.” This new space will help us provide alternative fuel vehicle services to the region, and in conjunction with our larger facility, including our hydrogen fueling station, will allow us to host trainings, workshops, and demonstrations. We also have plans to add an electric vehicle charging station in our driveway, with interpretive signage to be funded by the CEC grant.

In other NorthCAT news, SERC has participated in the development of a NorthCAT Center Development Plan and SERC staff will attend a NorthCAT strategic planning meeting at UC Berkeley in August. Plans are also in the works to hold NorthCAT stakeholder outreach meetings in the North State region later this year to solicit input and spread the word about the new Center. Finally, a NorthCAT web page is under development and should go live by the end of this month.

North Coast PEV Charging Infrastructure

As the number of plug-in electric vehicles (PEVs) in Humboldt County grows, publically available charging stations are crucial to continued PEV adoption success.  According to the International Council on Clean Transportation, one out of every five new light-duty vehicles in the Eureka area is a PEV – the third highest percentage of all metropolitan areas in the United States.

One of the many benefits PEV drivers enjoy is that the majority of charging occurs overnight at home; however, there is still a need for PEV charging in public locations. Currently, there are eight active Level 2 PEV chargers available to the public in Humboldt County. SERC has partnered with the Redwood Coast Energy Authority (RCEA) to design and oversee the installation of an additional ten dual Level 2 charging stations in Humboldt County, each of which will be capable of charging two PEVs simultaneously.  The work is funded by the California Energy Commission’s Alternative and Renewable Fuel and Vehicle Technology (ARFVT) Program and is part of a regional effort to install PEV charging stations in the North Coast (Humboldt, Trinity, and Del Norte counties) and Upstate (Shasta, Siskiyou, Tehama, Colusa, and Glenn counties) regions.

Ten dual charging stations, such as the one pictured above, are slated for installation on the North Coast.  Photo credit  www.evsellc.com.

Ten dual charging stations, such as the one pictured above, are slated for installation on the North Coast. Photo credit www.evsellc.com.

The ten dual charging stations are slated for deployment this summer in nine locations: Greenway building in Arcata, North Coast Unified Air Quality Management District building in Eureka, St. Joseph Hospital in Eureka, McKinleyville Safeway shopping center, Trinidad library, China Flat Museum in Willow Creek, Rio Dell City Hall, Fortuna City Hall, and 4th St. parking lot in Ferndale.  The charging stations are sited in convenient locations for PEV drivers to charge their vehicles while completing daily tasks such as attending work, shopping, or visiting museums and libraries.

Since over half of Humboldt County’s energy-related greenhouse gas emissions come from transportation, successful PEV adoption is a positive step toward a low-carbon, sustainable transportation future for the north state region. SERC plans to continue working with RCEA and our Upstate partners to support the goal of adding more PEV charging station infrastructure throughout the North State region.

RePower Humboldt: Biomass-Fired Fuel Cell Power System

The 175 kW biomass-fired fuel cell power system being installed at the Blue Lake Rancheria is nearly complete. The Proton Power gasifier has been installed and gone through initial start-up procedures, including heating up the gasifier to temperature and running the flare. The gas compression system (rotary claw compressor, syngas ballast tank, and reciprocating compressor) has been tested and the control strategy has been confirmed. The Xebec pressure swing adsorption (PSA) hydrogen purifier is installed and ready for testing, and the Ballard PEM fuel cell is in place and has undergone pre-commissioning. Most of the peripheral systems (biomass feed, control, fire alarm and life safety, cooling, and ventilation) are complete or very near completion. Our next steps will be to obtain a fuel with a moisture content no greater than 40% (wet basis); begin making syngas; test and confirm syngas quality; and then fully commission the PSA and fuel cell system, as well as the fully integrated system. We submitted a draft final report to the CEC in March, but work on the system will continue over the next few months until we achieve full system operation and performance testing. Following these activities a revised final report will be submitted.

The Proton Power biomass gasifier installed at the Blue Lake Rancheria.

The Proton Power biomass gasifier installed at the Blue Lake Rancheria.

BRDI Waste to Wisdom: Remote Power Generation and Summer Testing

BRDI-2-webSERC continues work on the BRDI Waste to Wisdom project, a three-year, multidisciplinary project to study pathways to convert forest residuals – or slash piles – into valuable energy and agricultural products at processing sites near timber harvest locations. Many of the potential processing sites do not have access to electricity, so SERC has been analyzing various methods to power this industrial equipment in remote locations. With help from the Environmental Resources Engineering capstone design course, SERC completed a technical and economic feasibility analysis comparing various remote power generation technologies, including waste heat recovery, biomass gasification, solar photovoltaic, and others. The results from this paper study indicate that a biomass gasifier is likely to outperform the other technologies in terms of mobility, cost, reliability, and environmental impact. After presenting these finding to the U.S. Department of Energy, the funding agency for this project, we procured a mobile, 20 kW biomass gasifier (similar to the one in the photo above) from All Power Labs in Berkeley, CA. Once it arrives, we will begin a series of tests to evaluate whether its performance will meet the requirements to operate in the demanding conditions of a forest-landing site.

With the gasifier being fabricated and a torrefier and a briquetter being prepared for shipment, it’s shaping up to be an exciting and eventful spring and summer of biomass fieldwork. SERC will lead the effort to test the torrefier, briquetter, and gasifier generator set at a forest-landing site in Big Lagoon, CA. We will measure the performance characteristics of each machine with a variety of biomass feedstocks recovered from timber harvest operations here in northern California. In addition to testing these machines individually, their synergy in an integrated system will be evaluated by connecting them together. For example, we will conduct experiments to densify torrefied biomass and to evaluate whether the gasifier generator set can reliably provide electricity to the other machines. Having these three commercial-scale technologies at a single site provides a unique testing and demonstration experience.

To prepare for this fieldwork, we have been busy developing the testing matrices, procuring feedstocks, detailing our instrumentation plans, preparing our data analysis tools, and coordinating associated logistical issues. The entire BRDI team is looking forward to a productive season of data collection and analysis that will help address the key issues posing a barrier to recovery and utilization of forest residual waste.

Alternative Fuel Readiness Planning

Last year, in partnership with the Redwood Coast Energy Authority (RCEA) and other key regional partners, SERC embarked on a two-year Alternative Fuels Readiness Planning (AFRP) project funded by the California Energy Commission (CEC). This project seeks to assess the potential for development of alternative transportation fuels such as electricity, hydrogen, and some biofuels in the North Coast region of California.

The goal of the SERC-led analytical work is to explore pathways for the North Coast region to achieve the 10% reduction in average fuel carbon intensity by 2020 mandated under California’s Low Carbon Fuel Standard (LCFS). To this end, we have recently finished developing a simulation model, drawing on price data for fuels, vehicles, and distribution infrastructure, as well as analysis of regional transportation trends and fuel life cycle greenhouse gas (GHG) emissions. The model allows us to simulate the economic efficiency of GHG reduction via each fuel pathway individually as well as for a suite of technologies deployed to meet the LCFS target. It offers a nuanced understanding of the systems in question, enabling us to evaluate the impact of changing fuel and vehicle prices, electric grid carbon intensities, and other factors on the cost of GHG abatement through alternative fuel deployment.

Outputs of this analysis are being used by RCEA as it engages with both public and private sector transportation energy stakeholders across the region. This collaboration will lead to the development of a strategic plan for deploying a more sustainable transportation system in the North Coast of California.

Marginal Abatement Cost (MAC) for each of the fuel pathways considered. Presented here is aggregate marginal cost above a conventional fuel/vehicle baseline. These costs include fuel cost as well as any incremental vehicle or distribution infrastructure cost required for a given fuel type.

Marginal Abatement Cost (MAC) for each of the fuel pathways considered. Presented here is aggregate marginal cost above a conventional fuel/vehicle baseline. These costs include fuel cost as well as any incremental vehicle or distribution infrastructure cost required for a given fuel type.