Schatz Energy Spring/Summer Newsletter

Our print (and pdf) newsletter is just off the press, with features & updates on:

  • the Redwood Coast Airport (ACV) microgrid
  • breaking ground on Solar+ at the Blue Lake Rancheria
  • the California Biopower Impact project
  • our recent publications on biomass conversion technologies
  • the May dedication of the West Wing addition, and
  • HSU’s first EV charging station, unveiled at the Schatz Center…

… Plus a recap of our spring education and outreach programs, faculty and fellowship news, and recent conference presentations.

Two middle school students hold solar modules and fans in the sun


Students explore solar circuits at the 2018 Redwood Environmental Education Fair

Evaluation of biomass conversion technologies: new publication released

We recently completed work on the Waste to Wisdom project that examined the entire supply chain of converting forest waste residues into bioenergy and wood products. The Center’s role was to evaluate equipment that produces biochar, torrefied biomass, electricity, or densified wood briquettes using forest residues as the input feedstock. Collaborators from Humboldt State’s Forestry Department analyzed the upstream collection of forest biomass, and experts from the U.S. Forest Service conducted a lifecycle assessment and economic analysis of the supply chain.

SEM biochar image

SEM biochar image (taken at the HSU CNRS Core Facility)


Data collected by the Schatz Center during field tests of biomass conversion equipment were used to:

  • identify optimal process conditions,
  • specify feedstock limitations,
  • measure emissions,
  • evaluate product quality, and
  • recommend design improvements to equipment manufacturers.

Results and conclusions from the entire project are presented in a special issue of Applied Engineering for Agriculture, published in February 2018. Four principal investigators, including Schatz Center Director Arne Jacobson, summarized the project’s objectives and major conclusions in the introduction article to the special issue. Engineers from Schatz authored four papers, on biochar production, torrefaction and briquetting, and gasification of forest residues:

Collaborators at the U.S. Forest Service and the Consortium for Research and Renewable Industrial Materials (CORRIM) used the results collected from testing activities to conduct economic and environmental life cycle analyses of biomass conversion technologies. Field measurements from the Waste to Wisdom project will also be included in our current California Biopower Impacts project, which is evaluating the environmental impacts associated with utilization of forest-derived woody biomass for electricity generation.

This work could not have been completed without close collaboration between our primary industry partners: Biochar Solutions, Inc., Norris Thermal Technologies, and Pellet Fuels Institute, who provided the testing equipment. Other partners that provided key support include the Green Diamond Resource Company, the Redwood Forest Foundation, Inc. (RFFI), All Power Labs, Bear Mountain Forest Products, Colorado Biochar Resources, Pueblo Wood Products, California Redwood Company, North Coast Air Quality Management District, RUF Briquetting Systems, and OMNI Test Labs.

Stack of three briquettes; different colors represent combinations of temperature and time.
Forest residues were converted into torrefied briquettes in the demonstration-scale torrefaction plant. The perceptible differences in color and density reflect combinations of reaction temperature and residence time.

Energy Adoption Patterns in Uganda: Final Blog

In 2017, we worked with UNCDF’s CleanStart Programme in partnership with SolarAid/Acumen, to evaluate the impact of pay-as-you-go purchase opportunities for small solar systems in Uganda.

Here’s the third and final installment of our blog series, with some initial findings:

Read our previous blogs:

Blue Lake Rancheria microgrid wins Project of the Year Award at DistribuTECH conference

The Blue Lake Rancheria (BLR) microgrid was awarded the 2018 Project of the Year Award for Distributed Energy Resources (DER) Grid Integration at the annual DistribuTECH conference held this week in San Antonio, Texas. The award was given in recognition of the project’s ingenuity, scope, practicality, vision, and follow-through.

The Schatz Energy Research Center at Humboldt State University is the project lead and system integrator. The BLR microgrid integrates a photovoltaic array, a Tesla battery, and a legacy backup generator. A Siemens management system and foundational programming developed by Schatz engineers control the microgrid, which provides renewable electricity, lowers the Rancheria’s energy costs, and supports clean energy jobs. The microgrid also provides an emergency services backbone for its remote rural community and equips the Rancheria to serve as a Red Cross shelter in the event of a natural disaster.

DER design strategically deploys power generation across multiple sites to lower impact on existing grid infrastructure and to make use of renewable technologies including solar and wind. By locating power generation close to where that power will be used, utilities are able to streamline infrastructure improvements. When microgrids are employed, these smaller generation sites can disconnect from the main grid in the event of a grid outage – protecting critical electricity supply within a campus, business, hospital, or other community facility.

The BLR microgrid was funded by the California Energy Commission’s Electric Program Investment Charge and the Blue Lake Rancheria Tribe. Major project partners include Pacific Gas & Electric, Siemens, Tesla Energy, Idaho National Laboratory, GHD Inc., Colburn Electric, REC Solar, McKeever Energy & Electric, and Kernen Construction.

For more about Schatz DER, visit our projects page.

***

The Schatz Energy Research Center develops clean and renewable energy technologies for implementation worldwide. Current projects and expertise include smart-grid design, bioenergy assessment, off-grid energy access, and clean transportation. The Center also plays a leading role in the World Bank Group’s Lighting Africa and Lighting Asia initiatives, which support high quality, affordable energy solutions for people in off-grid and marginal-grid communities. The Schatz Center is located on the campus of Humboldt State University in Arcata, California.

Press Contact:
Maia Cheli, Schatz Energy Research Center
maiacheli@humboldt.edu / 707-826-4363

Energy Adoption Patterns in Uganda

The United Nations Capital Development Fund’s CleanStart Programme, in partnership with SolarAid/Acumen and the Schatz Center, is conducting research on energy adoption patterns. This project seeks to determine which channels customers in rural Uganda use to finance and purchase solar systems. We are also investigating the drivers of solar product adoption, including the influence of flexible financing tools on purchasing behavior.

We have learned that the quality of existing energy services plays an important role in shaping customers’ receptiveness to alternative off-grid solutions. Our research also shows that in-person marketing, “real-life” observations, interactions with sales staff, recommendations by thought leaders, and conversations with existing satisfied customers are all strongly influential in driving end-user uptake of solar energy products.

Solar Plus: Improving Performance in Distributed Clean Energy Systems

This fall, we are kicking off a new “Solar Plus” (Solar+) project to investigate how real-time coordination between clean energy systems can yield performance improvements that benefit both building owners and utility operations. Research and development over the past decade has successfully reduced the cost of solar arrays, batteries, building controls, and electric vehicles. Many of the emerging challenges we now face are related to the large-scale deployment and integration of distributed clean energy components. For example, electrical distribution circuit capacity is limited (in order to prevent power lines from overheating), which in turn limits the downline capacity of distributed generation systems. This Solar+ project will develop control strategies to coordinate onsite resources to reduce their combined footprint on the power system, effectively increasing the capacity of the grid to host clean energy technology.

Our pilot site is a gas station and convenience store at the Blue Lake Rancheria (BLR) in Blue Lake, California. Convenience stores typically have sizable loads, including HVAC and refrigeration, which require backup power. Many of the sites also have significant potential to host rooftop solar. By working with a very common building type (there are 12,000 convenience stores in California alone), we can design with replication in mind.

Over the next two and a half years we will design and install a Solar+ system at the BLR and measure the value of distributed energy coordination. Our project will develop: (1) a hardware design guide for integrated Solar+ packages, (2) open-source software for controlling the technology, and (3) guidelines to determine the best locations for investment, given local insolation and onsite potential for system coordination. Our outcomes will be focused on integrating solar, batteries, and advanced building controls into packages that are market ready and can make positive impacts on the future trajectory of California’s built environment.

Photo of the Blue Lake Rancheria gas station and store


The Rancheria gas station & convenience store

This project is funded by the California Energy Commission through the Electric Program Investment Charge (EPIC) program. Our key partners are the Blue Lake Rancheria, which owns the gas station, and Lawrence Berkeley National Lab, where a team of researchers is developing open-source “Solar+ Optimizer” software.

Project partners also include Southern California Edison, whose refrigeration system test center data is helping us to develop algorithms, and Pacific Gas & Electric, the local energy utility.

Schatz History: the Trinidad photovoltaic array

From 1990 through 2016, a 9.2kW photovoltaic (PV) array located at the Humboldt State Telonicher Marine Laboratory in Trinidad, CA powered the Schatz Solar Hydrogen Project. This array provided the energy to aerate the Marine Laboratory aquaria either directly or indirectly through a Teledyne Energy Systems ALTUS™ 20 electrolyzer that produced hydrogen fuel for a proton exchange membrane fuel cell.

Peter Lehman and Charles Chamberlin stand outside the Schatz Solar Hydrogen Project


Peter Lehman and Charles Chamberlin

Charles Chamberlin and students at the foot of the Trinidad solar array


Students enact a fuel cell exchange as hydrogen and oxygen “molecules”

Located ~150 meters from the Pacific Ocean in a cool, marine climate, the array consisted of 192 ARCO M75 modules made with single-crystal silicon and rated at 48W. Prior to array installation in 1990, Jim Zoellick measured the current-voltage (I-V) curves for each module and discovered that even when new, the average peak power under full solar illumination at normal operating cell temperature was 39.9W – 14% below the 46.4W nameplate rating.

After 11 years of field exposure, Antonio Reis and Nate Coleman retested each module’s I-V curve in 2001 and found that the average peak power had fallen by 4.3% to 38.1W. They attributed the drop in performance to visually observable defects in the modules, especially the delamination of the modules’ ethylene vinyl acetate (EVA) encapsulant, leading to shading and corrosion of the cells and the occurrence of localized hot spots.

After 20 years of service, Marc Marshall, Mark Rocheleau, and Scott Rommel again retested each module’s I-V curve in 2010, and found that the average peak power had fallen an additional 12.4% to 33.4W and that the variation among the modules had dramatically increased.

After over 26 years of field service, the array was decommissioned in 2016. All of the 192 modules were removed and tested one last time by Jacob Rada, a M.S. candidate working at SERC. He found that the average peak power had fallen 22% since 1990, with an average degradation rate of 0.85%/yr, and that the variation among the modules had increased further since 2010. Each original module was discolored and showed some degree of delamination. (Read the paper…)

Two students test a PV module outside the Schatz Center



Andre Bernal and Jake Rada test a PV module

Having now been individually tested four times over 26 years, these are some of the oldest carefully monitored solar modules from a working array. Of the original 192 models, 188 modules were still in service after 26 years. One module was damaged in 1996 and was replaced with a module of similar size and performance characteristics. Three other modules were later replaced due to physical damage.

In the coming year, we will be hanging seven of the modules with their corresponding I-V curve data in the staircase of our main building, as a celebration of our Center’s first project and as a teaching tool for university students and visitors.

Blue Lake Rancheria Microgrid: project update

The Blue Lake Rancheria (BLR) renewable energy microgrid received full permission to connect to the Pacific Gas & Electric grid on July 28, 2017. Designed and implemented by a team led by the Schatz Energy Research Center at Humboldt State University, this new microgrid powers critical infrastructure for the BLR tribal community and the Humboldt County region.

A microgrid is an independent power generation and management system which can operate both while connected to (parallel) or disconnected from (islanded) the electric power grid. In the event of a power outage, a microgrid enters islanded mode and balances all power generation and electrical loads independent of the utility.

The BLR microgrid breaks new ground in its seamless transition between grid-paralleled and grid-islanded states and by demonstrating stable islanded operation with a high percentage of renewable energy.

This project heralds the first deployment of the Siemens Spectrum 7 based microgrid management system (MGMS) and the first multi-inverter Tesla battery energy storage system (BESS) utilized in a microgrid application. The MGMS and the BESS were integrated using foundational relay control programming developed at the Schatz Center.

At 420 kWAC, the Rancheria’s PV array is also the largest installed in Humboldt County. The BLR microgrid has a total of 1.92 MW of generation capacity, including the PV array, a 500 kW, 950 kWh Lithium-ion Tesla battery, and a legacy 1.0 MW backup diesel generator.

Sun on panels at the Blue Lake Rancheria microgrid

Panel Array at the Blue Lake Rancheria

The microgrid powers numerous building and facility loads, including heating, ventilation and cooling; lighting; water and wastewater systems; communications; food production and storage; and transportation. The BLR green commuter program and electric vehicle infrastructure for the tribal government fleet are supported by the microgrid.

The BLR campus has also been certified to serve as an American Red Cross emergency shelter. The microgrid can maintain stable electricity for the shelter during extreme natural events such as an earthquake, tsunami, flood or wildfire. During an extended grid outage, the Rancheria can designate and shed non-critical energy loads as needed.

By coupling renewable generation with battery storage, the BLR microgrid achieves significant reductions in both utility cost and greenhouse gas emissions. The microgrid is now saving the Blue Lake Rancheria $250,000 annually and has allowed the Rancheria to increase tribal employment by 10% with new clean energy jobs.

The Blue Lake Rancheria microgrid was developed through funding from the California Energy Commission’s EPIC program. Major partners on this project included Pacific Gas & Electric, Siemens, Tesla Energy, Idaho National Laboratory, GHD Inc., Colburn Electric, REC Solar, and Kernen Construction.

• For more information about the Blue Lake Rancheria microgrid and upcoming projects at the Schatz Energy Research Center, call (707) 822-4345 or email serc@humboldt.edu.

• For more information about Blue Lake Rancheria’s sustainability and green energy initiatives, please email info@bluelakerancheria-nsn.gov.

California Biopower Impact Project: creating a Life Cycle Assessment for bioenergy systems

The Schatz Center recently began work on the California Biopower Impact (CBI) Project, supported by a three-year $1,000,000 grant from the California Energy Commission. Our project will investigate the impacts associated with utilization of forest-derived woody biomass and agricultural residues for electricity generation. If managed properly, bioenergy could support sustainable forest management activities while also advancing California’s Renewables Portfolio Standard goals. However, there are also legitimate concerns surrounding the climate, air quality, soil fertility, and ecosystem health implications of improperly managed bioenergy systems. Before biomass energy can be responsibly pursued as a means to achieve forest management and renewable energy goals, additional research is needed to firmly establish the climate impact and broader environmental performance of forest and agricultural bioenergy.

Our central effort under the CBI Project will be the creation of a Life Cycle Assessment (LCA) greenhouse gas emissions accounting tool that will allow stakeholders in California to evaluate the impacts of different bioenergy policy and technology pathways in the state. Along with greenhouse gas balances, the project team will address additional critical environmental impacts that can be associated with bioenergy – including altered risk or severity of wildfire, soil fertility and carbon stock reduction, changes to air quality, and potential impact on habitats and biodiversity.

Pile of small branches


Woody biomass

Key study areas and outputs:

  • Assessment and mapping of net recoverable biomass that could be utilized for electricity generation. This analysis will focus on agricultural residues as well as forestry residues and fire reduction thinning material per the California Governor’s state of emergency brought on by the record numbers of drought and beetle- killed trees in the Sierra Nevada range.
  • Conduct a landscape-level probabilistic assessment of the fire risk implications of sustainable forest harvesting. Fire behavior under future climate scenarios will be simulated using the Pacific Northwest variant of the USDA Forest Vegetation Simulator (FVS) in combination with the Fires and Fuels Extension and Climate Extension modules.
  • Develop and demonstrate the California Residual Biomass-to-electricity Carbon Accounting Tool (CaRBCAT). This tool will improve on existing frameworks representing California’s unique bioeconomy context, offering improved spatial resolution, rigorously characterizing uncertainty, and offering a high degree of specification regarding supply chain characteristics. Users will be able to specify harvest practices, feedstock collection and handling methods, post-harvest treatments, feedstock management pathways, conversion technologies, and other characteristics.
  • Characterize and report on key environmental impacts of residual biomass mobilization such as changes to soil nutrient balance and carbon stock, air quality effects from altered black carbon and criteria air pollutant emission profiles, and impacts to biodiversity.
  • Assess potential to offset some harvest and supply chain costs through payments for ecosystem services and similar environmental market schemes.
  • Identify best management practices to improve bioelectricity system net GHG balance as well as to optimize performance with respect to fire risk, soil health, air quality, and habitat conservation. Develop and disseminate science-based policy recommendations that support implementation of these practices in bioelectricity supply chains.
Kevin Fingerman headshot


Kevin Fingerman, CBI Project Principal Investigator

Kevin Fingerman is a Schatz Center Faculty Research Associate and an Assistant Professor of Environmental Science & Management at Humboldt State University. His research employs life cycle assessment and simulation modeling tools to evaluate the broad-based impacts of bioenergy and transportation energy systems. He has also worked extensively on the water/energy nexus and on bioenergy policy.

Kevin serves on the board of directors of the Roundtable on Sustainable Biomaterials and, prior to joining HSU, he worked in Rome for the United Nations Food and Agriculture Organization. He holds MS and PhD degrees from UC Berkeley’s Energy & Resources Group.

Microgrid Feasibility Study for UCSC

The Schatz Center is working with GHD, an international engineering firm, to conduct a microgrid feasibility study for the University of California, Santa Cruz (UCSC). The study is focused on a former semi-conductor manufacturing facility that was acquired by UCSC and is being converted to offices and research lab space. UCSC wants to install a microgrid with renewable energy generating capacity of 2 to 4 Megawatts, allowing the facility to island and operate independently of the Pacific Gas & Electric grid as well as parallel with and provide support to PG&E’s grid in Santa Cruz. Another important objective is to use the microgrid as a teaching and learning laboratory by including both commercially mature and emerging/experimental technologies as well as advanced supervisory control and data acquisition systems.

The study includes:

  • evaluating microgrid technologies,
  • assessing space requirements for generation and storage technologies,
  • developing a design load profile for full occupancy,
  • selection of recommended technologies,
  • developing a site plan and one line diagram,
  • estimating construction costs,
  • evaluating interconnection requirements/constraints,
  • developing an implementation plan including potential funding sources,
  • identifying educational curriculum opportunities, and
  • evaluating how to connect the facility with the adjacent UCSC Coastal Sciences Campus to create one large microgrid that could support both of these facilities.

This project is currently active and scheduled to be completed by the end of 2017. The project is funded by the UC Regents.