BRDI Waste to Wisdom: Results from Preliminary Biomass Briquetting

The Biomass Research and Development Initiative (BRDI) Waste to Wisdom project is studying various pathways to increase the value of forest residuals and decrease transportation costs to bring this underutilized resource into the renewable energy market. Densifying waste biomass into briquettes during forest operations may achieve both of these goals by converting it into a valuable heating fuel that is easily transported due to its high density and low moisture content.

SERC Project Manager Dave Carter operates the briquetter.

SERC Project Manager Dave Carter operates the briquetter.

Last April, SERC engineers, alongside partners from Pellet Fuels Institute and RUF Briquetting Systems, operated a commercial briquetter with a variety of feedstocks at Bear Mountain Forest Products’ manufacturing plant in Cascade Locks, Oregon. Electricity consumption and biomass throughput data were collected in the field, while a pallet containing feedstock and briquette samples was shipped to SERC for material analysis. Back at SERC’s lab, the samples were sent through a suite of tests to assess the quality of each briquette and determine which feedstock properties influence the end product’s characteristics, such as density, durability, grindability, and moisture absorption.

Briquettes produced from chipped biomass exit the briquetting machine.

Briquettes produced from chipped biomass exit the briquetting machine.

Results show that this briquetting system increases the volumetric energy density of chipped biomass by nearly 250%, producing briquettes with an average packing density of 720 kg/m3. Feedstocks with moisture content exceeding 15% produce lower density briquettes, which expand in height after exiting the briquette press. High moisture content, however, does not significantly impact briquette durability. Instead, the feedstock’s particle size distribution has the greatest effect on briquette durability. Feedstocks comprising mainly large particles, especially chipped biomass, do not bind together as well as fine or ground particles. To improve durability, chipped biomass can be combined with sawdust, which increases briquette durability two-fold and results in briquettes with a binding strength similar to those produced from pure sawdust.

These results help frame and guide our future work with biomass densification. In the next stages of this project, the multidisciplinary BRDI research team will investigate whether the upstream energy investments in drying and particle size reduction are worth the payback when bringing briquettes to the heating market.